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Abstract

We present a numerical method for solving the multicomponent incompressible Navier–Stokes equations. The methods
employs a moving grid technique and a projection scheme based on low-order Crouzeix–Raviart and P1 finite elements.
The computational grid is aligned with the fluid interface at each time step to keep the interpolation order optimal. The
connectivity of the grid is fixed during the entire time simulation to ensure efficient assembling and parallelization. The
method is tested on several examples.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Flow problems involving moving interfaces like shock waves, immiscible liquids, biological membranes,
and many others, occur often in various applications. This paper presents an approximation technique for
solving incompressible flows with sharp capillary interfaces between two or more immiscible fluids. There
are several major techniques for tracking moving interfaces and computating surface tension. The reader is
referred to [22] for a very comprehensive review on the subject. Well focused presentations of the develop-
ments of the volume-of-fluid (VOF) method can be found in [7,14]. For reviews on the level set methods
the reader is referred to [17,15], and for front tracking techniques see [9,6]. For particular implementations
of those techniques in the context of the finite element method the reader is referred to [4,16,21]. Very impres-
sive results using adaptive soroban grids, a shock capturing technique, and a finite difference method have
been recently presented by Yabe et al. [20]. These are just several of the most recent works on a subject that
generated a large number of publications in the last two decades. This list of references is far from being
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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complete; however, these publications together with the references therein, provide a fairly good picture of the
techniques available in the literature.

In this paper we present a new technique, which evolved from our experience in this field (see [18,16,2,19]).
Before that, we summarize the specific problems arising in free boundary problems and we show how we pro-
pose to address them in the present paper. The main difficulties arising in these problems are the following

� The proper approximation of the velocity and pressure in the vicinity of the free boundary. The Eulerian
approach (VOF or level set methods for example) uses a fixed grid, and the free boundary intersects the
edges of the grid cells (lattices in FD terminology or elements in the FE terminology). Such a discretization
producing a smooth approximation within the intersected grid cells contradicts the fact that the exact solu-
tion or its derivatives may have a jump across the interface. Different ways to fix this problem have been
proposed, such as the immersed interface method (see [11]) in case of finite difference approximations, the
basis enrichment by [16], or a local mesh refinement (see [2]). But none of these methods is completely sat-
isfactory. Local refinement changes significantly the grid structure around the boundary, which leads to
problems with parallelization. Local basis enrichment is relatively easier to parallelize, but the spatial inter-
polation close to the interface is not optimal. The immersed interface method of Levesque and Li [11] is
limited to the solution of the steady Stokes problem. Moreover, it can be used in the context of finite dif-
ference methods only. Finally, most Eulerian methods suffer from local mass conservation problems across
the interface, which can produce so-called spurious velocities. The technique presented in this paper aligns
the element faces with the free boundary at each time step, thus adapting the grid in the vicinity of the
boundary, keeping invariant the grid connectivity, and preserving the interpolation optimality. In this
respect the proposed method resembles the grid-based front tracking method of [8].
� Conservative and stable advection of free boundaries. The free boundary is controlled by a nonlinear

advection equation which is well-known for the numerical difficulties that it poses. There is a large variety
of stabilized methods dedicated to solving this problem, but no ultimate satisfactory solution exists. In the
present paper, the volume of the different fluid particles involved in the motion of the interface is corrected
by appropriately correcting the position of the nodes defining the free boundaries.
� Approximation of the curvature of the interface. Standard C0-discretizations of free boundaries are not

smooth enough to properly compute the boundary curvature, which is needed to account for the surface
tension. Again, there is a variety of approaches involving, for example, cubic spline approximations (see
[11]) or computing the curvature from a level set function (see [15]). The present technique employs a simple
local regularization of the approximation, which was first briefly tried in [18]. It approximates the curvature
in a way that the surface tension contribution is exactly equal to zero if the free boundary is circular (in 2D)
or spherical (in 3D), thus eliminating spurious oscillations of the boundary. Spurious currents occur in most
Eulerian methods (see [22,7]) and, although they are controlled by the truncation error of the discretization,
they can be significant if the surface tension is large. Spurious oscillations can occur in Lagrangian methods
too if the curvature approximation is not properly coordinated with the velocity approximation.

The remainder of the paper is organized as follows. In Section 2 we discuss the formulation of the problem.
The details of the temporal and spatial discretizations are presented in Section 3. We detail the grid alignment
algorithm and the algorithm for approximating the surface tension in Section 4. Numerical tests validating the
method are reported in Section 5.

2. Formulation of the problem

Consider a flow of two incompressible, Newtonian, and immiscible fluids in a bounded domain X. In this
paper we consider the 2D version of the method. The extension to 3D is not straightforward and requires some
adjustments of the algorithms for tracking the free boundaries and the solution of the linear system arising
from the projection step. Nevertheless, it has been tested and the 3D algorithm will be reported elswhere.
The fluid iði 2 f1; 2gÞ occupies a domain Xi, has a velocity ui, pressure pi, density qi, viscosity li, and is subject
to the gravity force. The density and viscosity in each phase are assumed to be constant. X1 and X2 do not
overlap (X1 \ X2 ¼ ;) and are separated by a smooth interface C ¼ oX1 \ oX2. In all test cases presented in
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Section 5 the domain X2 consists of only one fluid particle. Therefore, for the sake of simplicity, this is
assumed in the remainder of the paper and we will sometimes refer to X2 as”the particle”. It will become clear
that the algorithm can be easily generalized to the case when neither of the fluids is distributed in the other
fluid, or to the case of multiple fluid particles distributed in another fluid (as long as the distance between them
is not too small). It is convenient to define a global velocity and pressure u and p such that u ¼ ui; p ¼ pi in Xi

and introduce the notations
kq ¼
1 in X1

q2

q1
in X2

(
and kl ¼

1 in X1

l2

l1
in X2:

(
ð2:1Þ
Then, after proper nondimensionalization, we rewrite the Navier–Stokes equations in the following form:
kq
Du

Dt
¼ kl

Re
r2u�rp � kq

Fr2
ey in X; for 0 < t 6 T ð2:2Þ

r � u ¼ 0; in X; for 0 < t 6 T ; ð2:3Þ
where ey is the unit vector in the direction opposite to the direction of gravity, while Re and Fr are the Rey-
nolds and Froude numbers
Re ¼ q1uclc

l1

; Fr ¼ ucffiffiffiffiffiffi
lcg
p ; ð2:4Þ
with uc and lc being the characteristic velocity and length, respectively. The quantity
Du

Dt
is the so-called mate-

rial derivative of u.
For simplicity we assume homogeneous Dirichlet boundary condition for the velocity on the external

boundary
ujoX ¼ 0 for 0 < t 6 T : ð2:5Þ

On the interface C the velocity is continuous
u1jC ¼ u2jC; ð2:6Þ

and the stress satisfies the following force balance condition
p2I� p1I� 1

Re
l2

l1

ru2 �ru1

� �� �
� n ¼ 1

We
,n on C; ð2:7Þ
where We is the Weber number
We ¼ q1u2
clc

r
; ð2:8Þ
r is the surface tension coefficient, , is the curvature of C, and n is the unit normal pointing out of X2. This
condition differs from the standard force balance condition
p2I� p1I� 1

Re
l2

l1

ru2 þ ðru2ÞT
� �

� ru1 þ ðru1ÞT
� �� �� �

� n ¼ 1

We
,n on C: ð2:9Þ
It is a natural boundary condition for the momentum Eq. (2.2) and is therefore more convenient for deriving a
weak formulation. Our previous numerical experience (see [2],[19]) shows that this condition gives results that
compare very well with other numerical and experimental results on a wide range of parameters. Nevertheless,
it can be expected that at low Reynolds numbers, (2.7) would not be accurate. One possible way to impose
(2.9) is to use the semi-implicit approach proposed in [12]. As it will become clear below, the current splitting
scheme can be easily modified to incorporate such an approach. It requires to add to Eq. (3.1) explicit terms
accounting for the missing part of the divergence of the stress. Consequently, Eq. (3.3) must also be adjusted
by adding implicitly all missing stress terms in the i-th momentum equation that involve the i-th component of
the velocity. Using a normal modes analysis, it was demonstrated in [12] that such a semi-implicit scheme
would be unconditionally stable. Of course, we can also treat the full stress tensor implicitly but this would
destroy the block-diagonal structure of the momentum Eq. (3.3).
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The initial velocity is assumed to be incompressible in each phase
ujt¼0 ¼ u0; r � u0 ¼ 0 in Xi; i ¼ 1; 2: ð2:10Þ

In the sequel we make use of the following notation
L2ðXÞ ¼ ½L2ðXÞ�2; H1
0ðXÞ ¼ ½H 1

0ðXÞ�
2
;

H ¼ fv 2 L2ðXÞ; r � v 2 L2ðXÞ; v � nj@X ¼ 0g:
Multiplying (2.2) by a test function v 2 H1
0ðXÞ, integrating by parts the stress terms, and incorporating the

stress balance condition (2.7), we obtain the following weak formulation of the momentum equation:
kq
Du

Dt
; v

� �
þ kl

Re
ðru;rvÞ � ðp;r � vÞ ¼ � kq

Fr2
ðey ; vÞ �

1

We

Z
C

,v � n dl; 8v 2 H1
0ðXÞ: ð2:11Þ
The weak form of the incompressibility constraint is given by
ðr � u; qÞ ¼ 0; 8q 2 L2ðXÞ: ð2:12Þ
3. Discretization

3.1. Time splitting

The weak formulation is discretized in time by a first-order standard version of the velocity-correction
scheme discussed in [10].

Let N be a positive integer. We divide the time interval ½0; T � into N subintervals of equal length Dt ¼ T=N
and denote the time levels by tn ¼ nDt; n ¼ 0; . . . ;N . At each time level n the velocity-correction scheme
requires two approximations for the velocity ~un 2 H1

0ðXÞ and un 2 H, as well as an approximation for the pres-
sure pn 2 L2ðXÞ. Assuming that ~un and un are known at some time tn (at n ¼ 0 we choose ~u0 ¼ u0 ¼ u0) the
splitting proceeds as follows:

� Projection step: Find unþ1 2 H and pnþ1 2 L2ðXÞ such that for all / 2 H1
0ðXÞ and q 2 L2ðXÞ
kq
unþ1 � ~un

Dt
;/

� �
þ kqðð~un � rÞ~un;/Þ þ kl

Re
ðr~un;r/Þ � ðpnþ1;r � /Þ ¼ � kq

Fr2
ðey ;/Þ �

1

We

Z
C

,/ � ndl;

ð3:1Þ
ðr � unþ1; qÞ ¼ 0: ð3:2Þ
� Correction step: Find ~unþ1 2 H1
0ðXÞ such that for all / 2 H1

0ðXÞ
kq
~unþ1 � unþ1

Dt
;/

� �
þ kl

Re
ðr~unþ1 �r~un;r/Þ ¼ 0: ð3:3Þ
Note that the projection step is a mixed form of a Poisson equation for the pressure.
3.2. Spatial discretization

We recently developed a pressure-correction projection scheme using a combination of P1 and non-con-
forming linear Crouzeix–Raviart finite elements (see [3]) for the velocity and a piecewise constant pressure.
Here we will only present a brief description of how the same idea is applied to the velocity-correction scheme
above. For a detailed description and analysis the reader is referred to [1].

Computational grids on X are denoted by Gh;n ¼ ðN h;n; Eh;n; T h;nÞ where h is the characteristic meshsize. The
mesh is composed of conforming triangular elements. The set of all triangles is denoted by T h;n. The sets of the
vertices and the edges of all the triangles in T h;n are denoted by N h;n and Eh;n, respectively. We set
NN :¼ cardðN h;nÞ, N E :¼ cardðEh;nÞ and N T :¼ cardðT h;nÞ. We also denote by Mh;n the set of the midpoints
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of the edges. As it will become clear below, the grids used in the computations are different for each time level
and therefore, we use the subscript n to denote the time level to which the given set corresponds. Also, from
now on we use a superscript m to denote the time level to which a given discrete quantity, say rh, corresponds,
while a subscript n denotes the time level of the grid on which rh is defined, i.e., rm

h;n is the quantity rh computed
at time level m on the grid Gh;n.

Let us define the following discrete spaces
Uh;n ¼ fuh 2 H 1
0ðXÞ

2 j uhjs 2 P2
1; for all s 2 T h;ng; ð3:4Þ

Vh;n ¼ fvh 2 L2ðXÞ2 j vhjs 2 P2
1; for all s 2 T h;n; vh is continuous at all m 2Mh;ng; ð3:5Þ

Wh;n ¼ fwh 2 Vh;n j ðr � whÞjs ¼ 0; for all s 2 T h;ng; ð3:6Þ
Qh;n ¼ fq 2 L2ðXÞ j qjs ¼ const; for all s 2 T h;ng; ð3:7Þ
where P1 is the space of linear polynomials of two variables. For a given grid Gh;n, Uh;n is the standard func-
tional space associated with P1 elements, Vh;n is the space of velocities of the linear Crouzeix–Raviart elements,
Wh;n is the divergence free subspace of Vh;n, and Qh;n is the space of piecewise constant pressures.

At each time level m and for each grid Gh;n, we have two discrete velocities ~um
h;n 2 Uh;n and um

h;n 2Wh;n. The
projection step is approximated by Crouzeix–Raviart elements and the velocity correction step by P1 elements.
The advantage of this setting is that the projected velocity is locally mass conservative, which is particularly
important when multicomponent flows are considered, while the correction step is resolved with relatively
fewer degrees of freedom using P1 triangles (two times the number of nodes in the grid) compared to the
degrees of freedom involved in a Crouzeix–Raviart approximation (twice the number of edges). This setting
is not inf-sup stable and indeed, at very small time steps spurious oscillations in the pressure can be observed.
However, as shown in [1], it is optimally accurate for the velocity if the so-called cross grids are used. In addi-
tion, some heuristic arguments and the numerical evidence provided in [1] demonstrate that the locking of the
velocity which is typical for the P 1 � P 0 element on diagonal grids is prevented in this setting. In the same ref-
erence, the authors provide an example of a postprocessing procedure for the pressure which filters out the
spurious modes and provides optimal pressure approximation. But in order to insure an optimal convergence
rate for the velocity, the computational grid must be aligned with the interface at each time step. We also
require that the grid alignment does not change the connectivity of the grid and does not introduce any
new nodes, edges, elements and/or degrees of freedom. This guarantees that, even though the grid is different
and all the matrices must be reassembled, the structure of the matrices remains unchanged which facilitates the
parallelization of the algorithm. Morover, only a small number of entries in the matrices needs be changed,
since we confine the alignment of the grid to the narrow strip of elements containing the interface; the reas-
sembly procedure is thus greatly accelerated.

The general idea is to maintain a reference grid Rh, which can be any triangulation of X so as to produce a
grid that meets our requirements. Assuming that the current position of the interface is known, we can find the
nodes in Rh that are the closest to C and move them so as to position them on C, provided the required dis-
placement does not exceed the diameters of the cells that are involved. The new grid is then aligned with the
interface in the sense that C does not intersect any edge and is approximated by a set of edges of elements in
the modified grid. These edges form a piecewise linear approximation of the interface.

Suppose that Gh;n is constructed so that it fits C at time tn. Suppose also that ~un
h;n and un

h;n are known. Then
the algorithm proceeds to the next time level as follows.

� Calculation of the position of the interface at time tnþ1. The curve formed by all the edges of Gh;n that belong
to the interface provides a piecewise linear approximation to the interface at time tn which we denote by
Cn

h;n. The motion of the free boundary is approximated by moving the nodes of Cn
h;n along the characteristics

of the flow that pass at time tn through the nodes. For the approximation of the characteristics we need to
know explicitly the fluid velocity in each of the nodes. In the present case, the only available approximation
to this velocity which is defined nodewise is the end of step velocity ~un

h;n. On the other hand, the velocity
resulting from the projection step (3.1), un

h;n, is locally conservative (divergence-free within each element)
and so, more appropriate to be used as an advection velocity. However, it is continuous only at the mid-
points of the element edges and cannot be used directly for approximating the characteristics passing
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through the nodes of the grid. In order to use un
h;n to advect the boundary, we first project it onto Uh;n with

an L2-projection. The resulting velocity, which we denote by ûn
h;n, is no longer locally conservative, however,

its divergence is significantly smaller than that of ~un
h;n. Moreover, since it is defined at the grid nodes, we use

it to apply the method of characteristics to advect the grid. Let xi 2 N h be a node in the reference grid Rh.
We use xn

i 2 N h;n to denote the position of this node in the current grid Gh;n. The position of this node after
advection is denoted by x̂nþ1

i and is computed via the following Euler explicit scheme
x̂nþ1
i � xn

i

Dt
� ûn

h;nðxn
i Þ ¼ 0: ð3:8Þ

When applying the maps xn
i 7!x̂nþ1

i to the entire grid Gh;n we obtain the so-called advected grid Ĝh;nþ1. The im-
age of Cn

h;n by the above map provides an approximation Cnþ1
h;n for the position of the free boundary at tnþ1.

Note that no computation is performed on the advected grid Ĝh;nþ1; this grid is used only to define the new
position of the interface for the purpose of grid alignment and for interpolating the velocity if one chooses
the method of characteristics to approximate the nonlinear term at the projection step described below.
� Reference grid alignment with Cnþ1

h;n and generation of Gh;nþ1. The details of this procedure are given in Section
4 below. Note that the nodes in Gh;nþ1 that define the interface are not necessarily the same as the nodes on
Cnþ1

h;n , i.e., we now have a new approximation of the interface, Cnþ1
h;nþ1, embedded in Gh;nþ1.

� Projection step. We now describe three possible ways for implementing the projection step. These possibil-
ities depend on how the approximation of ~un is constructed on the new grid Gh;nþ1 and how the nonlinear
term is treated. Since the velocity ~un

h;n is only defined on the grid Gh;n we need to transfer it to the new grid
Gh;nþ1 in order to perform the current and the next step.

The first option we consider consists of interpolating ~un
h;n on Gh;nþ1, i.e., we define ~un

h;nþ1 2 Uh;nþ1 so that
~un
h;nþ1ðxnþ1

i Þ ¼ ~un
h;nðxnþ1

i Þ; 8xnþ1
i 2 N h;nþ1: ð3:9Þ
Then the projection step is approximated as follows: Find unþ1
h;nþ1 2Wh;nþ1 such that for all wh 2Wh;nþ1
kq

unþ1
h;nþ1 � ~un

h;nþ1

Dt
;wh

 !
þ kqðð~un

h;nþ1 � rÞ~un
h;nþ1;whÞ þ

kl

Re
ðr~un

h;nþ1;rwhÞ

¼ � kq

Fr2
ðey ;whÞ �

1

We

Z
C

,nþ1wh � ndl: ð3:10Þ
When the ratio of the two viscosities is large, the velocity may vary significantly across the interface and thus
the interpolation process producing ~un

h;nþ1 may not be very accurate. This leads to an additional stability
restriction, which can be severe for large viscosity ratios kl. Note, that this problem is even more severe if
the pressure from the previous time step needs to be transfered, as a pressure-correction method would re-
quire, the reason being that the pressure is usually discontinuous across the interface and such an interpolation
would not be consistent. This is the main reason why we choose a velocity-correction technique rather than a
pressure-correction scheme to march in time. Two possible alternatives to the above interpolation problem are
proposed below.

The second option consists of using the forward method of characteristics for integration of the interface
trajectory and the advection terms in the Navier–Stokes equations. The method of characteristics is known to
possess better stability properties than most other explicit methods. The numerical tests below confirm that it
has the best stability properties among the three possibilities considered in this paper. After advecting the
nodes and producing the advected grid according to (3.8), we define the advected velocity �unþ1

h;n 2 bUh;nþ1 based
on bGh;nþ1 via �unþ1

h;n ðx̂nþ1
i Þ ¼ ~un

h;nðxn
i Þ.

If the time step is small enough so that the elements in bGh;nþ1 have positive Jacobeans (this is the stability
restriction of the method), these nodal values of the advected velocity define a piecewise linear interpolant on
the advected grid bGh;nþ1. The transfered velocity ~un

h;nþ1 2 Uh;nþ1 is produced by interpolating the values of �unþ1
h;n

at the nodes of Gh;nþ1. Since the advection terms in the momentum equation are already taken into account in
the definition of ~un

h;nþ1 the projection step reduces to the following: Find unþ1
h;nþ1 2Wh;nþ1 such that for all

wh 2Wh;nþ1
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kq

unþ1
h;nþ1 � ~un

h;nþ1

Dt
;wh

 !
þ kl

Re
ðr~un

h;nþ1;rwhÞ ¼ �
kq

Fr2
ðey ;whÞ �

1

We

Z
C

,nþ1wh � n dl: ð3:11Þ
The third alternative consists of using an Arbitrary Eulerian–Lagrangian (ALE) approach (see [5]). Both grids,
Gh;n and Gh;nþ1 are produced from the same reference grid by only changing the position of some nodes. There-
fore, there are natural one-to-one mappings between the nodes xn

i in Gh;n, the nodes xnþ1
i in Gh;nþ1 and the nodes

xi in the reference grid. Then we define the discrete mesh velocity via
�un
i ¼

xnþ1
i � xn

i

Dt
ð3:12Þ
This discrete velocity can be extended to a piecewise linear velocity using the standard finite element interpo-
lation. For this purpose, we define �un

h;nþ1 2 Uh;nþ1, such that
�un
h;nþ1ðxnþ1

i Þ ¼ �un
i ; 8xnþ1

i 2 N h;nþ1: ð3:13Þ
We also define the transferred material velocity ~un
h;nþ1 2 Uh;nþ1 as
~un
h;nþ1ðxnþ1

i Þ ¼ ~un
h;nðxn

i Þ: ð3:14Þ
With these definitions, the projection step 3.10 becomes: Find unþ1
h;nþ1 2Wh;nþ1 such that for all wh 2Wh;nþ1
kq

unþ1
h;nþ1 � ~un

h;nþ1

Dt
;wh

 !
þ kqððun

h;nþ1 � rÞ~un
h;nþ1;whÞ � kqðr � ð�un

h;nþ1~u
n
h;nþ1Þ;whÞ þ

kl

Re
ðr~un

h;nþ1;rwhÞ

¼ � kq

Fr2
ðey ;whÞ �

1

We

Z
C

,nþ1wh � ndl: ð3:15Þ
These methods for transfering data between the two grids Gh;n and Gh;nþ1 are evaluated numerically in Section
5; the characteristic (second) approach seems to be the most stable when the viscosity ratio is large.

� Correction step. Correcting the velocity does not pose any particular difficulty. This step is formulated as
follows: Find ~unþ1

h;nþ1 2 Uh;nþ1 such that for all /h 2 Uh;nþ1
kq

~unþ1
h;nþ1 � unþ1

h;nþ1

Dt
;/h

 !
þ kl

Re
ðr~unþ1

h;nþ1 �r~un
h;nþ1;r/hÞ ¼ 0 ð3:16Þ
4. Alignment of the grid

Let us assume that the reference grid Rh and a piecewise linear approximation of the interface C are given.
There are many different ways to produce a new grid Gh, which has the same connectivity as Rh and is aligned
with C. We use the algorithm outlined below.

4.1. General algorithm

The steps of the algorithm are:

(1) Determine the phase (either X1 or X2) to which the nodes in Rh belong and label them appropriately with
a phase marker. More details are given in the next subsection.

(2) Create a list containing all the edges intersecting the interface and a list of the end points of those edges
(called pending nodes) using the phase marker defined in the previous item. In addition, create an edge
counter associated with each pending node, which counts the number of edges connected to this node
and intersecting the interface.

(3) Find the projection on C of each pending node and calculate the distance to the interface. Then sort the
list of the pending nodes according to their distance to C.
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(4) Process the pending nodes starting with the closest to C. If a pending node is on the interface or on the
outer boundary of X, it is removed from the list of pending nodes. Otherwise, it is replaced by its pro-
jection on C and removed from the pending nodes list. All the edges connected to this node and previ-
ously intersecting C are deleted from the intersected edges list and the edge counters of all the end points
of those edges are decreased by one. A pending node whose edge counter becomes 0 is deleted from the
list. At the end of this procedure C does not cross any edge.

(5) The projection of nodes on the interface can severely decrease the quality of the grid in its vicinity (as a
measure for the quality of an element we use the ratio of the radii of the inscribed and circumscribed
circles). It can also create finite elements with negative Jacobeans of their affine mapping to the standard
triangle. Therefore, we apply a simple local mesh regularization procedure which proceeds as follows.
First we check for each node which is on the interface, or is connected via an edge to an interface node,
if it is inside the polygon defined by the nodes connected to it with an edge. A node that is outside of its
polygon and is not on the interface, is moved to the centroid of the polygon. An interface node which is
outside of its polygon is moved to the centroid only if in the new configuration neither of the edges con-
nected to it are intersected by the interface again. Otherwise, the quality of the given element is improved
when some of the neighbouring interface points are removed from the interface. Note that if the sur-
rounding polygon is non-convex and the indentation of its surface is extremely large, the centroid itself
may be outside the polygon; however, this has never occurred on the meshes that we have used so far (see
Fig. 1).

(6) Check if the grid contains elements having three nodes on the interface. Since for such an element it
is difficult to determine to which fluid it belongs, one of its nodes is moved to the centroid of its
polygon. Note that there is at least one node in the element such that all of its neighbours, except
those on C, belong to the same phase (see Fig. 2), and this is the node which is removed from the
interface.
Fig. 1. Projecting a pending node on the interfaces. In the new position, no edge coming out of the node intersects C.

Fig. 2. Element with three nodes on C. At least one node (A) will have all neighbours on the same side of C.
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(7) Verify the integrity of the new approximation of the interface. Since we presume that it is a closed curve
without self intersections, at this stage of the algorithm each node on the interface should have exactly
two neighbours that are also on the interface.

(8) Correct the volume of the region enclosed by the approximate interface. Note, that the grid alignment
can lead to mass loss since the nodes moved to the interface are not necessarily moved to the positions
occupied previously by interface nodes. One way to guarantee global mass conservation is to enforce it
during the projection on the interfaces as a side constraint, using one Lagrange multiplier for each inter-
face. We use a simpler procedure which nevertheless has performed excellently in all test cases that we
considered. All interface nodes are moved away from or towards the centre of mass of the particle, until
its proper volume is restored. If xold

j are the coordinates of a node on Ch before the volume correction
then its new coordinates xnew

j are computed according to:
xnew
j ¼ xc þ

V

V old

� �1=d

ðxold
j � xcÞ;
where xc are the coordinates of the centre of mass of the particle, d ¼ 2 is the number of spatial dimen-
sions, V is the desired volume and V old is the volume before correction. If the correction is performed at
each time step, the factor ð V

V old Þ1=d is of order of the truncation error of the method and therefore this
correction does not spoil the consistency of the discretization.

(9) At the volume correction step, some of the elements around the boundary can become intolerably
stretched. In such case the nodes near the interface (but not on it) are moved to the centroids of their
polygons once more.

A major advantage of this algorithm is that it preserves the grid connectivity at all time levels and only
alters the position of some nodes near the interface. This allows for a straightforward and balanced parallel-
ization of the linear solvers because the matrix structure remains the same at all time steps. In addition, only
the entries corresponding to nodes that were moved or their neighbours need to be updated so that the matrix
updates are computationally inexpensive. In addition, the mass of the particle is conserved at each time step.
4.2. Computing the phase marker and projection of a point on the boundary

Let us introduce a discontinuous marker function having value 1 in phase 1 and 2 in phase 2 (more phases can
be introduced). Suppose also, that the grid at t ¼ 0 is properly aligned with the interface and that the marker
function is properly initialized, i.e., all nodes are labeled with the number of the domain that they correspond
to. The nodes on the interface are marked with a separate marker indicating the number of the interface and
the two domains separated by it. At the first step of the solution algorithm described in Section 3.2, all nodes
of the grid Gh;n are advected alongside an approximation of the characteristics passing through them. As a result,
if they have been properly labeled at time level n their labels in the new position of the grid define an approxi-
mation of the marker function at time level nþ 1. In order to compute its values in the nodes of the reference
grid we only need to locate the element in the advected grid containing a given node of the reference grid.

To find this element quickly, we start searching with the elements connected to the given node, and if nec-
essary the search continues within their neighbours, etc.

The first step of the solution algorithm described in Section 3.2, yields a piecewise linear approximation of
the interface, Cnþ1

h;n , which contains a number of points and the line segments connecting them. In the next step,
we need to construct a new piecewise linear approximation of the interface, Cnþ1

h;nþ1, by projecting the nearest
points of the reference grid onto Cnþ1

h;n . Since Cnþ1
h;n is not smooth, the projection of a point onto it can often

cause nonphysical oscillations. This effect can be avoided by employing a smooth approximation with cubic
splines, for example, but the spline computation is costly and it is relatively difficult to generalize to 3D. An
alternative used in this study, which smooths C only locally, is to approximate it with an arc of a circle. Sup-
pose that we have a point P anywhere in X and we need to construct its projection P 0 onto a given interface
Cnþ1

h;n . Then the projection procedure employed in the present technique can be summarized as follows (see
Fig. 3 for the geometric details):



Fig. 3. Construction of the projection P 0 of a point P on the interface by approximating C locally with a circle.
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� Compute the distance from P to every point on Cnþ1
h;n . Find the point A in Cnþ1

h;n that is closest to P .
� Find points B and C – the left and right neighbours of A on Cnþ1

h;n .
� Construct point O – the circumcentre of MABC. Also compute the radius R of the circumscribed circle.
� Construct point P 0 – it is the point of intersection of the circumscribed circle of MABC and the line OP . We

compute its position as the point on the ray OP
	!

, which is at a distance R from O.

An advantage of this procedure is that, if C is an exact circle, then the points of the new approximation
Cnþ1

h;nþ1 will be positioned on this circle. Consequently, as shown in the next subsection, the surface tension
can be approximated so that its contribution is equal to zero. This prevents the formation of the so called par-
asitic currents around a circular interface at rest (see [22]). Many Eulerian and even some Lagrangian algo-
rithms, suffer of nonphysical oscillations of the capillary interface due to such currents.
4.3. Computation of the surface tension

For a given point on the interface, the curvature and the outer normal are approximated with the curvature
and the normal to the locally circular approximation constructed at this point, as explained in the previous
section. Note that this approximation is used only for their computation, and the surface tension integral
in (3.10) is computed on the piecewise linear approximation of the interface comprised by the elemental edges
aligned with it. Therefore, the normal vector toward a given edge ek is constant. It is approximated as the aver-
age of the two endpoint unit normal vectors nk;0 and nk;1, which is then normalized to an unit length. Further-
more, the curvature is approximated linearly over the edge ek. Note that the Crouzeix–Raviart basis function
associated with the edge ek is constant on this edge. Therefore, the approximation of the surface tension inte-
gral in (3.10) involves the integration of a linear function along a straight line and thus, the midpoint quad-
rature is exact. The final approximation of the surface integral is
1

We

Z
ek

,nwk dl � 1

We
,k;0 þ ,k;1

2

nk;0 þ nk;1

knk;0 þ nk;1k
lk; ð4:1Þ
where ,k;0 and ,k;1 are the curvatures at the two endpoints of ek and lk is the length of the edge. This approx-
imation guarantees that a static circular drop at zero gravity will remain at rest because the surface tension
integral in (3.10) is equal to zero. Indeed, this surface tension integral, when tested with the basis function
wk 2 Vh;nþ1 associated with edge ek in Cnþ1

h;nþ1, becomes perpendicular to the edge and proportional to its length.
This guarantees that the integral over the entire circular interface is equal to zero. It can be verified directly
that this is generally not true when a higher order approximation for the interface is used. Higher smoothness
of the approximation makes it in a way”incompatible” with the solenoidal projection; the piecewise constant
pressure is not capable of neutralizing the more accurate surface tension and as a result parasitic velocities
appear in unþ1

h;nþ1.
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5. Numerical validation

The proposed algorithm has been tested on a number of validation problems.

5.1. Lid-driven cavity flow

In order to validate the grid alignment algorithm we solve the well known lid-driven cavity problem on two
different grids. The first one is a uniform triangular grid consisting of 40� 40 squares subdivided into triangles
and it is fixed during the period of the simulation ð0; T �. A sample grid consisting of 5� 5 nodes with the same
structure is illustrated in Fig. 4. The second grid is produced from the same background grid by aligning it at
each time step with an interface advected with the flow. Initially this interface is a circle of a radius r ¼ 0:2 and
it is centered at the geometric centre of the cavity. The Reynolds number is Re ¼ 40 and the surface tension
and gravity forces are equal to zero. At the final time T ¼ 2:0, the interface is significantly deformed, but the
results presented in Fig. 5 show that the velocity fields resulting from the two simulations are essentially the
same (the initial and final positions of the interface are also shown in the right panel of this figure).

5.2. A convergence test

In order to study quantitatively the influence of the grid alignment on the accuracy of the scheme we repeat
the previous test, however, now the initial and boundary conditions for the velocity are given by the following
analytical solution
u ¼ sinðxÞ sinðy þ tÞ
v ¼ cosðxÞ cosðy þ tÞ
p ¼ cosðxÞ sinðy þ tÞ
with an appropriate source term added to the right-hand side of the governing equations. The case with a
moving interface is solved using the three techniques discussed in Section 3.2–interpolation, ALE, and method
of characteristics. Fig. 6 presents the convergence in space and time of ~u in L2- and H 1-norms. It is clear that
the presence of a moving boundary does not change the convergence of the algorithm. The method of char-
acteristics is the least accurate, although it exhibits the same order of convergence as the other methods.
0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 4. Sample 4� 4 grid.
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Fig. 5. Comparison of the results of the simulation of a lid-driven cavity flow with (right) and without (left) a free moving interface.
Re ¼ 40, Dt ¼ 0:005, grid 40� 40, no surface tension.
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5.3. A circular drop

Consider a circular fluid particle immersed in another fluid and subject only to a non-zero surface tension
(at zero gravity). If both fluids are at rest initially, the interface remains circular and the velocity field is equal
to zero at all times. The pressure is also constant in each phase having a constant jump across the interface.
This test case is quite challenging for many numerical techniques despite that the exact solution is so simple.
The problem is that unless the curvature of the interface is approximated so that the contribution of the sur-
face force to the right-hand side of (3.10) vanishes, the solution for the velocity would be non-zero and even if
it is relatively small, provided that the surface tension is large enough, it can trigger oscillations on the inter-
face. In addition, if the interface intersects some computational cells, the pressure cannot be properly approx-
imated at the boundary (because it has a jump there) and as a result, after a sufficiently long integration in
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time, a significant loss of mass may accumulate. The present method is exact (up to the machine accuracy) for
this problem. It was tested in the square ½�1; 1� � ½�1; 1�, for the following values of the dimensionless param-
eters: kq ¼ 1, kl ¼ 1, Re ¼ 10, We ¼ 0:2; 1:0; 5:0 on uniform grids of a grid size in each of the coordinate direc-
tions equal to 1/40 and 1/80.

The next test case considers the advection of a circular drop with a constant velocity field u ¼ ð1; 0Þ at
zero gravity. The boundary and initial conditions for the velocity are all set to (1,0) and the parameters are
kq ¼ 1, kl ¼ 1, Re ¼ 10 and We ¼ 0:2; 1:0; 5:0. Theoretically, the shape and the velocity of the drop must not
change as it moves. The domain is given by ½�1; 1� � ½�0:5; 0:5�, and the radius of the circular particle is
0.25. The particle is initially located at ð�0:5; 0Þ. We use a grid of a grid size 1=24 in each coordinate direc-
tion and a time step Dt ¼ 0:00125. The final time is T ¼ 1:0. Each of these cases is solved using the methods
of interpolation, ALE and characteristics. All the methods produce the exact solution within the machine
accuracy.

5.4. Relaxation of a drop of simple shape

This is a classical test case for free boundary methods where the initial shape of the particle slightly deviates
from that of a disk and the gravity is set to zero. The problem is solved in the square ½0; 1� � ½0; 1�, with param-
eters kq � 1, kl � 1, Re ¼ 10, We ¼ 1:0, on a uniform grid with a grid size 1=40 in each direction, and a time
step Dt ¼ 0:0025. Initially the drop is elliptical with axes 5/16 and 1/5, i.e., it has the same area as a circle with
radius 1/4. The drop becomes circular at time 0.3 (see Fig. 7) and remains so thereafter.

In order to test the stability properties of the three methods for data transfer between two subsequent grids
this test case is run with a viscosity ratio kl ¼ 0:01 on a uniform grid of 81� 81 nodes. The results are sum-
marized as follows. The interpolation of data on the grid Gh;n reaches an approximately circular static shape
for Dt ¼ 0:00125, however, spurious instabilities in the velocity around the interface are observed for some
time after that. These oscillations are still presented if Dt ¼ 0:000833333 is used, and become insignificant
at Dt ¼ 0:000666667 when the drop relaxes to a circle smoothly. The method of characteristics diverges (does
not reach the circular steady shape) at Dt ¼ 0:002 however it converges smoothly to a circle at
Dt ¼ 0:001666667. The ALE method diverges at Dt ¼ 0:00125. At Dt ¼ 0:001111111 it reaches a circular static
shape, however, spurious instabilities around the interface can be observed for some time afterwards. It
converges smoothly to a circle at Dt ¼ 0:001. As expected, the method of characteristics has the most relaxed
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Fig. 7. Relaxation of elliptical particle. We ¼ 1:0, Dt ¼ 0:0025, grid 40� 40.
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stability restriction and therefore it is to be preferred at large viscosity ratios. If the viscosity ratio is close to
one, however, all methods have a very similar behaviour.
5.5. Relaxation of drop of a complex shape

The next test case considers the relaxation of a drop of complex shape to a circle. The initial star-like curve
given by
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r ¼ 0:2 sinð5hÞ � 0:5; ð5:1Þ
is proposed in [13]. The problem is solved in ½�1; 1� � ½�1; 1� on a uniform grid of 41x41 nodes with a time step
Dt ¼ 0:005 until time T ¼ 1:0. The values of the parameters are the same as in the previous example. The drop
reaches the static shape at approximately T ¼ 0:4. In Fig. 8 we present the initial and final form of the drop
together with the corresponding aligned grids, as well as the shape of the interface with the velocity field at
times T ¼ 0:1; 0:25; 0:4.
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Fig. 8. Relaxation of star-shaped particle. We ¼ 1:0, Dt ¼ 0:005, uniform grid of 41� 41 nodes.





6488 B. Bejanov et al. / Journal of Computational Physics 227 (2008) 6473–6489
5.6. Rising bubble

In the last test case we simulate the motion of a gas bubble immersed in a heavier liquid under the force of
gravity. We simulate conditions similar to one of the cases in the experimental study of Walters and Davidson
[23]. The parameters are Re ¼ 1000, Fr ¼ 1, We ¼ 200, kq ¼ 1=816 and kl ¼ 1=64. The bubble has initially a
circular shape with a radius equal to one, and is centered at ð0; 3Þ. The computational domain is
½�3; 3� � ½0; 9�, and the problem is discretized on a uniform grid with a grid size 0:1. The time step is
Dt ¼ 0:000125. The evolution of the bubble is presented in Fig. 9.

In the experiments of Walters and Davidson [23] a pinch off starts to develop at t ¼ 4:42. Since the pinch off
cannot be simulated with the present algorithm, we only compare the results before it occurs. The calculated
shapes correlate well with the experimental results (see Fig. 10).

6. Conclusions

In conclusion let us summarize the advantages of the technique presented in this paper.

� The spatial approximation of the solution of the Navier–Stokes equations is accurate because the free
boundaries are aligned with element edges on each grid.
� The grid connectivity does not change in time which makes the method easy to implement and parallelize.
� Strict mass conservation of the different phases is guaranteed.
� The approximation of the surface tension guarantees that the global contribution is equal to zero if the free

boundary is circular, thus avoiding spurious currents.
� Three options for transfering data between subsequent grids are proposed. It seems that the Lagrangian

and the ALE approaches yield better stability. However, this aspect of the method needs a further
investigation.
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